Intramolecular radical substitution reactions: a novel approach to fused [1,2-a]indoles

Stephen Caddick, ${ }^{*, a}$ Karim Aboutayab, ${ }^{a}$ Kerry Jenkins ${ }^{a}$ and Robert I. West ${ }^{b}$
${ }^{a}$ School of Chemistry and Molecular Sciences, University of Sussex, Falmer, Brighton BN1 9QJ, UK
${ }^{\text {b }}$ Department of Medicinal Chemistry, The Wellcome Research Laboratories, Langley Court, Beckenham, Kent BR3 3BS, UK

Abstract

A new approach to fused [1,2-a]indoles 25,26 and 27 is described; the synthesis is based on a novel intramolecular radical cyclization reaction involving ipso-substitution using sulfone, sulfide and sulfoxide substituted indoles. Some more general aspects of scope and limitation of the process are presented including vinyl and aryl radical cyclizations of 29 and 30 ; investigations using substituted indoline and aniline derivatives 35 and 37 are also discussed.

Introduction

The indole nucleus is ubiquitous in a wide range of natural products and indole alkaloids have proven to be attractive synthetic targets. In addition to their use in biological investigations they can also serve as useful vehicles for the development of new strategies and tactics for synthesis. ${ }^{1}$ Although numerous advances have been made, the preparation of functionalised indoles still represents a significant synthetic challenge. As part of our interest in the development of new synthetic methods for the preparation of indole alkaloids, we were attracted to the possibility of developing a free-radical ipso-substitution reaction (Scheme 1).

Scheme 1
A number of reports have illustrated the viability of preparing functionalised indoles via radical cyclization methodology; ${ }^{2}$ however in general the use of radical ipsosubstitution reactions has received little attention. ${ }^{3,4}$ We were interested in identifying the types of group which would participate in such a process as we felt that this might be useful for the development of new reactions for use in synthesis. ${ }^{5}$

Results and discussion

Precursors

We decided to prepare and utilize sulfur-substituted indoles in the proposed substitution reaction and used two methods for the introduction of sulfur at the 2-position of indole. ${ }^{6}$ In order to introduce the sulfone moiety we elected to use the excellent one-pot procedure developed by Katritzky and co-workers. ${ }^{7}$ We were able to prepare gram quantities of 2-[4-(methylphenyl)sulfonyl]indole 2 using this approach, as shown in Scheme 2. Although the yields were moderate ($33-45 \%$) the brevity of the procedure made it the most practicable approach to this compound. The phenylsulfinyl substituted indole 4 was prepared by oxidation of 2-phenylsulfanyl substituted indole 3 which was prepared by acid catalysed rearrangement of 3phenylsulfanylindole. ${ }^{8}$
The desired cyclization precursors were prepared in moderate yields from 2, 3 and 4, by N -alkylation using the appropriate

Scheme 2 Reagents and conditions: i, ref. 7, toluene-p-sulfonyl fluoride, $35-45 \%$; ii, oxone, $\mathrm{THF}-\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}, 50-64 \%\left(\mathrm{Tol}=4-\mathrm{MeC}_{6} \mathrm{H}_{4}\right)$

Table 1 Preparation of N-halogenoalkyl substituted indol-2-yl aryl sulfides, sulfoxides and sulfones

${ }^{a} \mathrm{Tol}=4-\mathrm{MeC}_{6} \mathrm{H}_{4}$.
dibromoalkane, ${ }^{9}$ followed by $\mathrm{S}_{\mathrm{N}} 2$ displacement with sodium iodide in acetone as shown in Table 1.

Alkyl radical cyclizations

The results from the cyclization experiments are presented in Table 2.

Initially we found that treatment of bromide precursors 5 and 6 with tributyltin hydride (TBTH) under radical conditions led to moderate yields of products $25^{2 a}$ and $26^{10}(40-60 \%)$;

Table 2 Radical cyclization of indol-2-yl aryl sulfides, sulfoxides and sulfones

Entry	Precursor	Z^{a}	\mathbf{X}	n	Product (\%)
1	$\mathbf{5}$	$\mathrm{SO}_{2} \mathrm{Tol}$	Br	1	$\mathbf{2 5}(75)$
2	$\mathbf{6}$	$\mathrm{SO}_{2} \mathrm{Tol}$	Br	2	$\mathbf{2 6}(84)$
3	$\mathbf{7}$	$\mathrm{SO}_{2} \mathrm{Tol}$	Br	3	$\mathbf{2 7}(17)$
4	$\mathbf{9}$	$\mathrm{SO}_{2} \mathrm{Tol}$	I	1	$\mathbf{2 5}(71)$
5	$\mathbf{1 0}$	$\mathrm{SO}_{2} \mathrm{Tol}$	I	2	$\mathbf{2 6}(71)$
6	$\mathbf{1 1}$	$\mathrm{SO}_{2} \mathrm{Tol}$	I	3	$\mathbf{2 7}(33)$
7	$\mathbf{1 2}$	$\mathrm{SO}_{2} \mathrm{Tol}$	I	4	$\mathbf{2 8}(0)$
8	$\mathbf{1 6}$	$\mathrm{SPh}_{\mathrm{I}}$	I	1	$\mathbf{2 5}(25)$
9	$\mathbf{1 7}$	$\mathrm{SPh}_{\mathrm{I}}$	I	2	$\mathbf{2 6}(51)$
10	$\mathbf{1 8}$	SPh	I	3	$\mathbf{2 7}(0)$
11	$\mathbf{2 2}$	SOPh	I	1	$\mathbf{2 5}(46)$
12	$\mathbf{2 3}$	SOPh	I	2	$\mathbf{2 6}(53)$
13	$\mathbf{2 4}$	SOPh	I	3	$\mathbf{2 7}(34)$

${ }^{a} \mathrm{Tol}=4-\mathrm{MeC}_{6} \mathrm{H}_{4}$.
however under the optimised conditions and with rigorously purified precursors, we were able to obtain yields of $70-85 \%$. As expected the iodides also underwent smooth cyclization to provide the products $\mathbf{2 5}$ and 26 . It is interesting to compare the yields from the cyclization of bromide $\mathbf{7}$ and iodide 11 leading to 27; ${ }^{10}$ the improvement in yield using 11 illustrates the superior nature of the iodides as precursors for these cyclizations. The success of this cyclization, albeit in modest yield, is particularly gratifying as the formation of seven-membered rings via radical cyclization methodology is relatively uncommon. In attempting to extend the scope of the process we examined cyclization of 12 which, perhaps unsurprisingly, led to none of the desired product 28 and resulted in a complex mixture comprising reduction and desulfonylation products.
The cyclizations using sulfinyl substituted indoles were attempted under similar conditions and were moderately successful. In each case cyclization products 25-27 were obtained (entries 11,12 and 13), but the yields of these reactions were less satisfactory than those obtained with the corresponding sulfones, although the yield obtained for cyclization of 24 was similar to the corresponding sulfone 11 (entries 13 and 6). Cyclization of the sulfide precursors proceeded in poor to moderate yields and we were never able to identify any of the desired product 27 from the reaction of $\mathbf{1 8}$ (entry 10).
It would appear that the sulfone and sulfoxide precursors participate more effectively in this type of reaction than the sulfides. It is tempting to speculate that this behaviour is a reflection of a slower rate of cyclization of a nucleophilic alkyl radical with the relatively electron rich π-system. From a practical viewpoint the sulfones are the precursors of choice as they are easier to prepare and undergo cyclization in generally good yields.
On an experimental note we have found that potassium fluoride ${ }^{11}$ is a useful aid for the separation of organotin byproducts, if ethyl acetate, as opposed to diethyl ether, is used as solvent in the work-up procedure described in the experimental section.

Sulfone substituted indoles: vinyl and aryl radical cyclizations

We were interested in determining the ability of vinyl and aryl radicals to participate in this ipso-substitution process. N alkylation of 2-[(4-methylphenyl)sulfonyl]indole 2 with either 2-bromobenzyl bromide or 1,3-dibromoprop-1-ene led to the cyclization precursors $29 \mathrm{a} / \mathrm{b}$ and 30 in 68 and 86% yields respectively (Scheme 3).
When we subjected 29a/b to the cyclization conditions we

Scheme 3 Reagents and conditions: i, $o-\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{Br}, \mathrm{KOH}, \mathrm{DMF}$, 68%; ii, 1,3-dibromopropene, KOH, DMF, 86%
obtained the desired product $31,{ }^{12}$ presumably via $1,5-$ sigmatropic rearrangement of the initially formed product, and reduction product 29 c as an inseparable mixture (29% yield, $1: 1$ mixture by ${ }^{1} \mathrm{H}$ NMR); the ratio of products was not improved using the $\mathrm{NaCNBH}_{3}-\mathrm{Bu}_{3} \mathrm{SnCl}$ conditions. The aryl halide precursor 30 also underwent cyclization to give the desired product $\mathbf{3 2}^{13}$ in 31% yield (Scheme 4).

Scheme 4 Reagents and conditions: i, $\mathrm{Bu}_{3} \mathrm{SnH}, \mathrm{AIBN}$, toluene, reflux
Thus it would appear that the vinyl and aryl radical cyclizations are viable but are low yielding and at present unlikely to offer a useful alternative to existing procedures for the synthesis of fused indoles of this type.

Sulfone substituted indolines and anilines

It was appealing to extend the study to investigate the generality of this type of radical cyclization methodology. We therefore prepared 35 by standard manipulations of an intermediate 7 sulfone substituted indoline 34 , which was itself prepared via regioselective lithiation of N -Boc-indoline $33 .{ }^{14}$ Sulfone 37 was readily prepared by acylation of commercially available 36 (Scheme 5).

Scheme 5 Reagents and conditions: $\mathrm{i}, \mathrm{Bu}{ }^{s} \mathrm{Li}$, TMEDA, $\mathrm{Et}_{2} \mathrm{O}$, $-78{ }^{\circ} \mathrm{C}, \mathrm{TolSO}_{2} \mathrm{~F}, 40 \%$; ii, $\mathrm{HCl}(\mathrm{aq}), \mathrm{THF}, 50-60{ }^{\circ} \mathrm{C}, 70 \%$; iii, $\mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{COCl}$, DMAP, $\mathrm{Et}_{3} \mathrm{~N}, 42-77 \%$

We were very pleased to find that treatment of 35 with TBTH furnished the tricycle 38^{15} in 57% yield (Scheme 6). However

Scheme 6 Reagents and conditions: i, $\mathrm{Bu}_{3} \mathrm{SnH}, \mathrm{AIBN}$, toluene, reflux
attempted cyclization of sulfone 37 furnished an inseparable mixture of reduced product 39 and starting sulfone 37 with none of the desired cyclization product isolated (Scheme 6). The sensitivity of radical cyclizations of amides to substituent effects is well documented ${ }^{16}$ and it may be that similar conformational effects are operating here and thus inhibiting cyclization.

Conclusion

We have developed a new approach to fused [1,2-a]indoles based on a novel radical ipso-substitution reaction. We have shown that sulfone, sulfinyl and sulfanyl substituted indoles can all participate in this type of reaction although it is clear that from a synthetic viewpoint optimal results are obtained using sulfone precursors. From a more general perspective, radical ipso-substitution reactions of this type may offer some interesting synthetic opportunities for the preparation of substituted/fused aromatic systems. We have some indications, for example, that it is possible to extend the methodology from simple heterocyclic aromatics, such as indoles, to carbocyclic aromatic systems, although the anomalous behaviour between the sulfone substituted indoline and aniline indicate that some limitations currently exist.

Experimental

Glassware used in the reactions was oven dried for at least 24 h or flame dried. All reactions were carried out under a positive atmosphere of argon or nitrogen unless otherwise stated. All solvents used in the reactions were dry: THF and diethyl ether were freshly distilled from sodium-benzophenone; dichloromethane, N, N-dimethylformamide (DMF) and toluene were distilled from calcium hydride. Petrol refers to light petroleum (bp $40-60^{\circ} \mathrm{C}$). All reagents were used as purchased or were purified using standard methods. 'Standard' or 'usual work-up' involved addition of water, extraction with six portions of diethyl ether ($25 \mathrm{~cm}^{3}$ per mmol) and drying with potassium carbonate. The reaction mixture was filtered and the organic solvent removed in vacuo. The potassium fluoride 'work-up' involved removing the solvent in vacuo and addition of water $\left(0.125 \mathrm{~cm}^{3}\right)$, ethyl acetate ($3 \mathrm{~cm}^{3}$) and potassium fluoride (150 mg) to the crude mixture and stirring overnight. Potassium carbonate was then added, the mixture filtered and the solvent removed in vacuo. This procedure was then repeated with stirring for 2 h . Proton NMR spectra were recorded at 360 MHz , carbon spectra were recorded at 125 MHz in CDCl_{3}, unless otherwise stated. Chemical shifts are reported downfield in parts per million using residual CHCl_{3} as internal reference and J values are given in Hz . Melting points are uncorrected. Analytical thin layer chromatography was performed using pre-coated glass-backed plates and
visualised by ultra-violet light, potassium permanganate or iodine as appropriate. Silica-gel chromatography was carried out using flash silica (mesh 230-400) and under slight pressure.

2-[(4-Methylphenyl)sulfonyl]-1 H -indole 2

Butyllithium ($1.6 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 7.0 \mathrm{~cm}^{3}, 11.2 \mathrm{mmol}$) was added dropwise to a solution of indole $1(1.27 \mathrm{~g}, 10.8 \mathrm{mmol})$ in THF $\left(40 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$. After $30 \mathrm{~min}, \mathrm{CO}_{2}(\mathrm{~g})$ was passed through the deep orange solution for 10 min . The resultant pale yellow solution was allowed to stand for 10 min and the solvent evaporated at $0^{\circ} \mathrm{C}(1 \mathrm{mmHg})$. The dry crystalline material was dissolved in THF ($40 \mathrm{~cm}^{3}$) and cooled to $-78^{\circ} \mathrm{C}$. tertButyllithium ($1.7 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 11.0 \mathrm{~cm}^{3}, 18.7 \mathrm{mmol}$) was then added dropwise to the solution and the dark yellow solution was stirred for 20 min . Toluene-p-sulfonyl fluoride $(1.91 \mathrm{~g}, 11.0$ mmol) in THF ($8.0 \mathrm{~cm}^{3}$) was then added to the solution at $-78^{\circ} \mathrm{C}$ to give a burgundy-coloured solution. After 1 h at $-78^{\circ} \mathrm{C}$, the solution was allowed to warm to room temperature. The reaction was stirred at ambient temperature for 2 h (TLC, petrol-diethyl ether, 2:1). The work-up involved pouring the solution onto an iced brine solution and then extraction as detailed in the general procedure. Purification (SiO_{2}, petroldiethyl ether, $20: 1$ to $3: 1$, then $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave the title compound 2 as a white solid ($1.04 \mathrm{~g}, 35 \%$), mp $196-197^{\circ} \mathrm{C}$ (hexane-diethyl ether) (Found: C, 66.5; H, 4.8; N, 5.2; S, 11.7. $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{2}$ S requires C, $66.40 ; \mathrm{H}, 4.83 ; \mathrm{N}, 5.16 ; \mathrm{S}, 11.82 \%$); R_{f} (SiO_{2}, petrol-diethyl ether, 2:1) 0.29; $v_{\max }($ film $) / \mathrm{cm}^{-1} 3333$, $2055,1618,1513,1494,1347,1305,1266,1155,1099,1019,949$, 896 and $817 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 8.82(1 \mathrm{H}, \mathrm{br}$ s), $7.89(2 \mathrm{H}, \mathrm{d}, J 8.4), 7.67$ ($1 \mathrm{H}, \mathrm{d}, J 8.2$), 7.42 ($2 \mathrm{H}, \mathrm{d}, J 8.2$), 7.34 ($1 \mathrm{H}, \mathrm{d}, J 6.8$), $7.20-7.14$ ($3 \mathrm{H}, \mathrm{m}$) and $2.40(3 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 144.5,138.6,137.2,134.5$, $130.0,127.3,127.1,126.0,122.6,121.5,112.4,108.9$ and 21.57 (Found: M, 271.0667. Calc. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{2} \mathrm{~S}: ~ M, ~ 271.0667$).

1-(tert-Butoxycarbonyl)-7-[(4-methylphenyl)sulfonyl]indoline

To a stirred solution of 1-(tert-butoxycarbonyl)indoline ${ }^{14}$ (4.27 mmol) in diethyl ether ($5 \mathrm{~cm}^{3}$) and $N, N, N^{\prime}, N^{\prime}$-tetramethylethylenediamine (10.6 mmol) at $-78^{\circ} \mathrm{C}$ was added sec-butyllithium (6.37 mmol) and the reaction mixture stirred at $-78^{\circ} \mathrm{C}$ for 190 min . Toluene-p-sulfonyl fluoride (5.14 mmol) in diethyl ether ($1.5 \mathrm{~cm}^{3}$) was added dropwise and the reaction stirred at $-78^{\circ} \mathrm{C}$ for 30 min and then allowed to warm to room temperature. Water $\left(10 \mathrm{~cm}^{3}\right)$ was added and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried and the solvent removed in vacuo to give the crude product. Purification $\left(\mathrm{SiO}_{2}\right.$, petrol-ethyl acetate, $4: 1$) gave the title compound as a white solid (639.6 mg , 40%), mp 137-138 ${ }^{\circ} \mathrm{C} ; R_{\mathrm{f}}\left(\mathrm{SiO}_{2}\right.$, petrol-ethyl acetate, 3:1) 0.3 ; $v_{\max }($ film $) / \mathrm{cm}^{-1} 2932,1718,1600,1449,1435,1371,1320,1160$ and 662; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.83-7.81(2 \mathrm{H}, \mathrm{d}, J 8.3), 7.66-7.64(1 \mathrm{H}, \mathrm{d}$, $J 8.2$), $7.35-7.33$ ($1 \mathrm{H}, \mathrm{d}, J 7.3$), 7.28 ($2 \mathrm{H}, \mathrm{d}, J 7.9$), 7.1-7.05 (1 $\mathrm{H}, \mathrm{t}, J 7.7), 4.16-4.12(2 \mathrm{H}, \mathrm{t}, J 7.9), 3.0(2 \mathrm{H}, \mathrm{t}, J 7.7), 2.4(3 \mathrm{H}$, s) and $1.54(9 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 154.0,147.7,141.3,139.2,136.8$, $130.5,129.5,129.0,128.7,127.5,123.9,82,51.2,29.0,28.2$ and 21.5 (Found: M, 373.1348. Calc. for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{~S}: M$, 373.1348).

7-[(4-Methylphenyl)sulfonyl]indoline 34

To a stirred solution of 1-(tert-butoxycarbonyl)-7-[(4-methylphenyl)sulfonyl indoline ($201 \mathrm{mg}, 0.538 \mathrm{mmol}$) in THF ($2 \mathrm{~cm}^{3}$) at $40-50^{\circ} \mathrm{C}$ was added aqueous hydrochloric acid $(6.27 \mathrm{mmol})$ and the solution concentrated in vacuo at $40-50^{\circ} \mathrm{C}$. The residue was redissolved in THF $\left(3 \mathrm{~cm}^{3}\right)$ and then neutralised with methanolic KOH solution. The solvent was removed in vacuo to give the crude product. Purification (SiO_{2}, petrol-ethyl acetate, $5: 1)$ gave the title compound $\mathbf{3 4}$ as a white solid ($102 \mathrm{mg}, 70 \%$), $\mathrm{mp} 135-136^{\circ} \mathrm{C} ; R_{\mathrm{f}}\left(\mathrm{SiO}_{2}\right.$, petrol-ethyl acetate, 3:1) 0.4; $v_{\max }($ film $) / \mathrm{cm}^{-1} 3417,2960,2928,2876,1609,1585,1490,1465$, 1156, 1133 and $1059 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.84-7.82(2 \mathrm{H}, \mathrm{d}, J 8.3), 7.45-$ 7.43 ($1 \mathrm{H}, \mathrm{dd}, J 8.13$ and 0.9), $7.29-7.27$ ($2 \mathrm{H}, \mathrm{d}, J 8.13$), 7.17 (1
$\mathrm{H}, \mathrm{dd}, J 7.1$ and 1.2), 6.66-6.62 $(1 \mathrm{H}, \mathrm{t}, J 8), 5.7(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.53-$ $3.48(2 \mathrm{H}, \mathrm{t}, J 8.6), 3.05-3.0(2 \mathrm{H}, \mathrm{t}, J 8.6)$ and $2.4(3 \mathrm{H}, \mathrm{s})$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 150.6,143.7,139.4,132.1,129.6,129.1,126.7,126.3$, 118.6, 117.3, 47.1, 28.6 and 21.5 (Found: $M, 273.0823$. Calc. for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{2} \mathrm{~S}: M, 273.0823$).

2-(Phenylsulfinyl)-1 H -indole 4

A solution of Oxone ${ }^{\text {TM }}(0.45 \mathrm{~g}, 0.732 \mathrm{mmol})$ in THF-methanol ($4 \mathrm{~cm}^{3}, 1: 1$) was added to a solution of 2-phenylsulfanylindole 3 ($163.0 \mathrm{mg}, 0.724 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$ in THF-methanol $\left(4 \mathrm{~cm}^{3}, 1: 1\right)$. The reaction mixture was stirred for 10 min at $0^{\circ} \mathrm{C}$ (TLC, petrol-diethyl ether, 1:1). After the standard work-up, purification of the crude mixture by silica gel chromatography (SiO_{2}, petrol-diethyl ether, $5: 1,3: 1,2: 1,1: 1$) gave the title compound 4 as a white solid ($111.0 \mathrm{mg}, 64 \%$), mp $139-140{ }^{\circ} \mathrm{C}$; $R_{\mathrm{f}}\left(\mathrm{SiO}_{2}\right.$, petrol-diethyl ether, 1:1) $0.32 ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3436$, 2903, 2106, 1642, 1620, 1504, 1416, 1345, 1231 and 1032; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 9.78(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.71-7.68(2 \mathrm{H}, \mathrm{m}), 7.63(1 \mathrm{H}, \mathrm{d}, J$ 7.4), $7.49-7.44(3 \mathrm{H}, \mathrm{m}), 7.39(1 \mathrm{H}, \mathrm{d}, J 8.2), 7.28-7.25(1 \mathrm{H}, \mathrm{m})$, 7.15-7.09 $(1 \mathrm{H}, \mathrm{m})$ and $6.92(1 \mathrm{H}, \mathrm{d}, J 0.78) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 140.7$, 137.8, 136.4, 131.1, 129.3, 127.0, 124.7, 121.7, 120.8, 112.2 and 106.8 (Found: $M, 242.0643$. Calc. for $\mathrm{C}_{14} \mathrm{H}_{11}$ NOS: M, 242.0640).

General procedure: preparation of 2-substituted \boldsymbol{N}-bromoalkylindoles

Powdered KOH was added to a stirred solution of 2-substituted indole and dibromoalkane in DMF ($6 \mathrm{~cm}^{3}$ per mmol). The reaction was stirred at ambient temperature (TLC analysis) and after the standard work-up the crude product was purified by silica gel chromatography to give the product.

1-(3-Bromopropyl)-2-[(4-methylphenyl)sulfonyl]-1 H -indole 5. Compound 5 was prepared in 51% yield according to the general procedure from compound $2(0.56 \mathrm{mmol}), \mathrm{KOH}(0.7$ mmol) and 1,3 -dibromopropane (1.7 mmol). Purification (SiO_{2}, petrol- $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 50: 1,20: 1,10: 1,5: 1,2: 1$) gave the title compound 5 as a white solid, $\mathrm{mp} 119-121^{\circ} \mathrm{C}$ (hexanediethyl ether) (Found: C, $55.0 ; \mathbf{H}, 4.6 ; \mathrm{Br}, 20.2 ; \mathrm{N}, 3.5 ; \mathrm{S}, 8.2$. $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{BrNO}_{2} \mathrm{~S}$ requires $\mathrm{C}, 55.24 ; \mathrm{H}, 4.64 ; \mathrm{Br}, 20.18 ; \mathrm{N}, 3.58$; $\mathrm{S}, 8.18 \%) ; R_{\mathrm{f}}\left(\mathrm{SiO}_{2}\right.$, petrol-diethyl ether, $\left.2: 1\right) 0.42 ; v_{\text {max }}{ }^{-}$ (film) $/ \mathrm{cm}^{-1} 2957,2923,1597,1505,1473,1445,1351,1320,1292$, $1214,1153,1097,1080,1018,977,901,814$ and $753 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ 7.85 ($2 \mathrm{H}, \mathrm{d}, J 8.4$), 7.71 ($1 \mathrm{H}, \mathrm{d}, J 8.02$), $7.44-7.37$ ($2 \mathrm{H}, \mathrm{m}$), 7.34-7.31 ($2 \mathrm{H}, \mathrm{m}$), 7.22-7.16 ($2 \mathrm{H}, \mathrm{m}$), 4.44 ($2 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.81$), 3.40 $(2 \mathrm{H}, \mathrm{t}, J 6.25), 2.40(3 \mathrm{H}, \mathrm{s})$ and $2.22(2 \mathrm{H}, \mathrm{p}, J 7.04) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ $144.7,138.9,138.3,134.9,130.0,127.8,127.7,125.9,123.0$, 121.4, 111.3, 110.5, 43.5, 32.8, 30.3 and 21.6 (Found: M, 391.0242. Calc. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{BrNO}_{2} \mathrm{~S}: M, 391.0242$).

1-(3-Bromopropyl)-2-(phenylsulfinyl)-1 H -indole 19. Compound 19 was prepared in 64% yield according to the general procedure from compound $4(0.98 \mathrm{mmol}), \mathrm{KOH}(1.27 \mathrm{mmol})$ and 1,3-dibromopropane (2.94 mmol). Purification (SiO_{2}, petrol-diethyl ether, 3:1,2:1) gave the title compound 19 as an oil; $R_{\mathrm{f}}\left(\mathrm{SiO}_{2}\right.$, petrol-diethyl ether, 2:1) $0.28 ; v_{\max }($ film $) / \mathrm{cm}^{-1}$ 2930, 2853, 1811, 1612, 1581, 1445, 1349, 1312, 1176 and 1043; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.69-7.58(2 \mathrm{H}, \mathrm{m}), 7.57-7.27(6 \mathrm{H}, \mathrm{m}), 7.21-7.14(1$ $\mathrm{H}, \mathrm{m}), 6.94(1 \mathrm{H}, \mathrm{d}, J 0.78), 4.46-4.19(2 \mathrm{H}, \mathrm{m}), 3.36-3.25(2 \mathrm{H}$, $\mathrm{m}), 2.35-2.19(1 \mathrm{H}, \mathrm{m})$ and $1.92-1.67(1 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 142.4$, $139.2,136.7,130.8,129.3,126.0,125.1,125.0,122.4,120.9$, $110.1,110.0,43.07,32.34$ and 30.38 (Found: $M, 361.0136$. Calc. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{BrNOS}: ~ M, 361.0136$).

1-(3-Bromopropyl)-2-(phenylsulfanyl)-1 H -indole 13. Compound $\mathbf{1 3}$ was prepared in 41% yield according to the general procedure from compound $3(1.0 \mathrm{mmol})$, $\mathrm{KOH}(1.27 \mathrm{mmol})$ and 1,3 -dibromopropane (3.0 mmol). Purification $\left(\mathrm{SiO}_{2}\right.$, petrol- $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25: 1,20: 1\right)$ gave 13 as an oil; $R_{\mathrm{f}}\left(\mathrm{SiO}_{2}\right.$, petrolether, 25:1) $0.5 ; v_{\max }($ film $) / \mathrm{cm}^{-1} 2941,1803,1703,1582,1440$, 1354, 1313, 1256, 1180 and 1157; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.65(1 \mathrm{H}, \mathrm{d}, J$ 5.86), 7.44 ($1 \mathrm{H}, \mathrm{dd}, J 8.4,0.98$), $7.31-7.28$ ($2 \mathrm{H}, \mathrm{m}$), 7.26-7.16(3 $\mathrm{H}, \mathrm{m}), 7.15-7.07(2 \mathrm{H}, \mathrm{m}), 6.95(1 \mathrm{H}, \mathrm{d}, J 0.78), 4.33(2 \mathrm{H}, \mathrm{t}, J$
7.04), $3.31(2 \mathrm{H}, \mathrm{t}, J 6.45)$ and $2.21(2 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 138.2$, $136.8,129.2,127.5,127.0,126.7,126.1,123.2,121.0,120.2$, 112.7, 110.0, 42.2, 33.1 and 30.3 (Found: $M, 346.0271$. Calc. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{BrNS}: ~ M, 346.0265$).
1-(4-Bromobutyl)-2-[(4-methylphenyl)sulfonyl]-1 \boldsymbol{H}-indole 6. Compound 6 was prepared in 60% yield according to the general procedure from compound $2(0.56 \mathrm{mmol}), \mathrm{KOH}(0.56$ $\mathrm{mmol})$ and 1,4 -dibromobutane (1.7 mmol). Purification $\left(\mathrm{SiO}_{2}\right.$, petrol- $\mathrm{CH}_{2} \mathrm{Cl}_{2}: 20: 1$ to $2: 1$) gave the title compound 6 as a white solid, mp 133-135 ${ }^{\circ} \mathrm{C}$ (hexane-diethyl ether) (Found: C, 56.1; $\mathrm{H}, 5.0 ; \mathrm{Br}, 19.4 ; \mathrm{N}, 3.4 ; \mathrm{S}, 7.8 . \mathrm{C}_{19} \mathrm{H}_{20} \mathrm{BrNO}_{2} \mathrm{~S}$ requires C, $56.29 ; \mathrm{H}, 4.98 ; \mathrm{Br}, 19.48 ; \mathrm{N}, 3.46 ; \mathrm{S}, 7.89 \%$); $R_{\mathrm{f}}\left(\mathrm{SiO}_{2}\right.$, petroldiethyl ether, 2:1) $0.31 ; v_{\max }($ film $) / \mathrm{cm}^{-1} 2959,2352,1580,1465$, $1442,1391,1318,1154$ and $1096 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.85(2 \mathrm{H}, \mathrm{d}, J 8.4)$, $7.83(1 \mathrm{H}, \mathrm{d}, J 8.21), 7.40-7.31(3 \mathrm{H}, \mathrm{m}), 7.22-7.16(3 \mathrm{H}, \mathrm{m}), 4.36$ $(2 \mathrm{H}, \mathrm{t}, J 7.82), 3.35(2 \mathrm{H}, \mathrm{t}, J 6.45), 2.41(3 \mathrm{H}, \mathrm{s})$ and $1.87-1.70(4$ $\mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ 144.6, 142.2, 138.4, 134.8, 130.0, 127.6, 125.7, $125.4,123.0,121.2,111.1,110.6,43.98,32.70,29.84,28.60$ and 21.58 (Found: $M, 405.0398$. Calc. for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{BrNO}_{2} \mathrm{~S}: M$, 405.0398).

1-(4-Bromobutyl)-2-(phenylsulfinyl)-1 H -indole 20. Compound 20 was prepared in 69% yield according to the general procedure from compound $4(0.62 \mathrm{mmol}), \mathrm{KOH}(0.775 \mathrm{mmol})$ and 1,4 -dibromobutane (2.33 mmol). Purification $\left(\mathrm{SiO}_{2}\right.$, petrol-diethyl ether, $3: 1,2: 1,1: 1$) gave the title compound 20 as an oil; $R_{\mathrm{f}}\left(\mathrm{SiO}_{2}\right.$, petrol-diethyl ether, 2:1) 0.28; $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 2928,2861,1724,1601,1582,1445,1349,1130$ and $1043 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.68(2 \mathrm{H}, \mathrm{d}, J 7.98), 7.64-7.62(3 \mathrm{H}, \mathrm{m}), 7.55-$ $7.50(1 \mathrm{H}, \mathrm{m}), 7.34-7.27(2 \mathrm{H}, \mathrm{d}, J 5.88), 7.20-7.17(1 \mathrm{H}, \mathrm{m}), 6.94$ $(1 \mathrm{H}, \mathrm{s}), 4.37-4.26(1 \mathrm{H}, \mathrm{m}), 4.21-4.16(1 \mathrm{H}, \mathrm{m}), 3.31-3.27(2 \mathrm{H}$, $\mathrm{dt}, J 6.45), 1.86-1.75(2 \mathrm{H}, \mathrm{m})$ and 1.33-1.26 ($2 \mathrm{H}, \mathrm{m}$); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 142.7,139.0,136.7,130.7,129.2,126.1,125.0,125.0$, 122.4, 120.8, 110.1, 109.6, 43.8, 32.8, 29.9 and 28.2 (Found: M, 375.0300. Calc. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{BrNOS}: M, 375.0300$).

1-(4-Bromobutyl)-2-(phenylsulfanyl)-1 H -indole 14. Compound 14 was prepared in 65% yield according to the general procedure from compound $3(0.28 \mathrm{mmol})$, $\mathrm{KOH}(0.35 \mathrm{mmol})$ and 1,4 -dibromobutane (0.84 mmol). Purification $\left(\mathrm{SiO}_{2}\right.$, petrol-diethyl ether, 2:1,1:1) gave the title compound 14 as an oil; $R_{\mathrm{f}}\left(\mathrm{SiO}_{2}\right.$, petrol-diethyl ether, $\left.25: 1\right) 0.5 ; v_{\max }($ film $) / \mathrm{cm}^{-1}$ 2932, 1806, 1724, 1582, 1440, 1352, 1313, 1219, 1024 and 1000 ; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.66(1 \mathrm{H}, \mathrm{d}, J 7.81), 7.35(1 \mathrm{H}, \mathrm{d}, J 7.03), 7.30(2 \mathrm{H}$, dd, $J 6.65,1.18$), 7.24-7.16 ($3 \mathrm{H}, \mathrm{m}$), 7.16-7.11 ($1 \mathrm{H}, \mathrm{m}$), $7.10-$ $7.01(1 \mathrm{H}, \mathrm{m}), 6.94(1 \mathrm{H}, \mathrm{d}, J 0.78), 4.21(2 \mathrm{H}, \mathrm{t}, J 7), 3.29(2 \mathrm{H}, \mathrm{t}$, $J 6.25)$ and $1.83-1.72(4 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 138.0,137.0,129.1$, $127.5,126.8,126.7,126.0,123.1,121.0,120.0,112.4,110.0$, 42.83, 32.89, 29.95 and 28.70 (Found: $M, 360.0417$. Calc. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{BrNS}: M, 360.0422$).
1-(5-Bromopentyl)-2-[(4-methylphenyl)sulfonyl]-1 H-indole 7. Compound 7 was prepared in 74% yield according to the general procedure from compound $2(0.4 \mathrm{mmol})$, $\mathrm{KOH}(0.5$ $\mathrm{mmol})$ and 1,5 -dibromopentane (1.2 mmol). Purification $\left(\mathrm{SiO}_{2}\right.$, petrol- $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 5: 1,2: 1,1.5: 1$) gave the title compound 7 as a white solid, $\mathrm{mp} 115-116^{\circ} \mathrm{C}$ (hexane-diethyl ether) (Found: C, $57.0 ; \mathrm{H}, 5.3 ; \mathrm{Br}, 19.2 ; \mathrm{N}, 3.2 ; \mathrm{S}, 7.7 . \mathrm{C}_{20} \mathrm{H}_{22} \mathrm{BrNO}_{2} \mathrm{~S}$ requires $\mathrm{C}, 57.14 ; \mathrm{H}, 5.28 ; \mathrm{Br}, 19.01 ; \mathrm{N}, 3.33 ; \mathrm{S}, 7.62 \%) ; R_{\mathrm{f}}\left(\mathrm{SiO}_{2}\right.$, , petroldiethyl ether, 2:1) $0.31 ; v_{\max }($ film $) / \mathrm{cm}^{-1} 2959,2873,1728,1580$, $1465,1381,1319,1288,1154$ and $1097 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.83(2 \mathrm{H}, \mathrm{d}$, $J 8.4$), 7.70 ($1 \mathrm{H}, \mathrm{d}, J 8.21$), $7.37-7.31$ ($3 \mathrm{H}, \mathrm{m}$), $7.19-7.13$ (3 H , $\mathrm{m})$, $4.29(2 \mathrm{H}, \mathrm{t}, J 8.21), 3.35(2 \mathrm{H}, \mathrm{t}, J 6.65), 2.40(3 \mathrm{H}, \mathrm{s}), 1.82-$ $1.71(2 \mathrm{H}, \mathrm{m})$ and 1.59-1.35 ($4 \mathrm{H}, \mathrm{m}$); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 144.5,138.7$, 138.5, 134.8, 130.0, 127.7, 125.6, 125.4, 122.9, 121.1, 110.9, $110.5,44.6,33.2,32.2,29.0,25.4$ and 21.6 (Found: $M, 419.0555$. Calc. for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{BrNO}_{2} \mathrm{~S}: M, 419.0554$).
1-(5-Bromopentyl)-2-(phenylsulfinyl)-1 H-indole 21. Compound 21 was prepared in 53% yield according to the general procedure from compound $4(0.78 \mathrm{mmol}), \mathrm{KOH}(0.98 \mathrm{mmol})$ and 1,5 -dibromopentane (2.37 mmol). Purification (SiO_{2}, petrol-diethyl ether, $2: 1,1: 1$) gave the title compound 21 as a white solid, mp $98-100^{\circ} \mathrm{C}$ (petrol-diethyl ether), $R_{\mathrm{f}}\left(\mathrm{SiO}_{2}\right.$,
petrol-diethyl ether, 2:1) $0.28 ; v_{\max }($ film $) / \mathrm{cm}^{-1} 2935,2859,1727$, $1609,1582,1448,1346,1227,1139$ and $1040 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.66$ (2 $\mathrm{H}, \mathrm{d}, J 8.04), 7.66-7.63(3 \mathrm{H}, \mathrm{m}), 7.55-7.50(1 \mathrm{H}, \mathrm{m}), 7.36-7.27$ $(2 \mathrm{H}, \mathrm{m}), 7.19-7.15(1 \mathrm{H}, \mathrm{m}), 6.93(1 \mathrm{H}, \mathrm{s}), 4.34-4.25(1 \mathrm{H}, \mathrm{m})$, 4.17-4.08 ($1 \mathrm{H}, \mathrm{m}$), $3.36(2 \mathrm{H}, \mathrm{t}, J 6.7), 1.76-1.59(4 \mathrm{H}, \mathrm{m})$ and 1.39-1.26 ($2 \mathrm{H}, \mathrm{m}$); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ 142.7, 139.0, 136.8, 130.6, 129.2, 126.1, 125.0, 124.9, 122.4, 120.7, 110.1, 109.4, 44.5, 33.4, 32.2, 28.6 and 25.4 (Found: $M, 389.0449$. Calc. for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{BrNOS}$: $M, 389.0449)$.

1-(5-Bromopentyl)-2-(phenylsulfanyl)- $\mathbf{1 H}$-indole 15. Compound 15 was prepared in 61% yield according to the general procedure from compound $3(0.50 \mathrm{mmol})$, $\mathrm{KOH}(0.63 \mathrm{mmol})$ and 1,5 -dibromopentane (1.52 mmol). Purification (SiO_{2}, petrol- $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 50: 1,30: 1,25: 1,20: 1\right)$ gave the title compound 15 as an oil; $R_{\mathrm{f}}\left(\mathrm{SiO}_{2}\right.$, petrol-diethyl ether, $\left.25: 1\right) 0.5$; $v_{\max }($ film $) / \mathrm{cm}^{-1} 2932,1728,1612,1582,1440,1352,1215,1024$ and $1013 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.65(1 \mathrm{H}, \mathrm{d}, J 7.82), 7.33(1 \mathrm{H}, \mathrm{d}, J 7.62)$, 7.29 ($2 \mathrm{H}, \mathrm{dd}, J 6.64,1.17$), $7.25-7.16$ ($3 \mathrm{H}, \mathrm{m}$), 7.15-7.13 (1 H , $\mathrm{m}), 7.11-7.06(1 \mathrm{H}, \mathrm{m}), 6.93(1 \mathrm{H}, \mathrm{d}, J 0.59), 4.18(2 \mathrm{H}, \mathrm{t}, J 7.53)$, $3.28(2 \mathrm{H}, \mathrm{t}, J 6.84), 1.78-1.68(2 \mathrm{H}, \mathrm{m}), 1.66-1.51(2 \mathrm{H}, \mathrm{m})$ and $1.43-1.30(2 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ 138.0, 137.0, 129.1, 127.4, 126.9, 126.7, 126.0, 123.0, 121.0, 119.9, 112.3, 110.0, 43.5, 33.3, 32.3, 29.2 and 25.5 (Found: $M, 373.0500$. Calc. for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{BrNS}: ~ M$, 373.0500).

1-(6-Bromohexyl)-2-[(4-methylphenyl)sulfonyl]-1 H -indole 8. Compound 8 was prepared in 50% yield according to the general procedure from compound $2(0.6 \mathrm{mmol}), \mathrm{KOH}(0.74$ mmol) and 1,6-dibromohexane (1.8 mmol). Purification (SiO_{2}, petrol- $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 5: 1,2: 1,1.5: 1$) gave the title compound $\mathbf{8}$ as a white solid, $\mathrm{mp} 69-71^{\circ} \mathrm{C}$ (hexane-diethyl ether) (Found: C, $58.1 ; \mathrm{H}, 5.5 ; \mathrm{Br}, 18.2 ; \mathrm{N}, 3.2 ; \mathrm{S}, 7.2 . \mathrm{C}_{21} \mathrm{H}_{24} \mathrm{BrNO}_{2} \mathrm{~S}$ requires $\mathrm{C}, 58.06 ; \mathrm{H}, 5.57 ; \mathrm{Br}, 18.40 ; \mathrm{N}, 3.22 ; \mathrm{S}, 7.38 \%) ; R_{\mathrm{f}}\left(\mathrm{SiO}_{2}\right.$, petroldiethyl ether, 2:1) $0.42 ; v_{\max }($ film $) / \mathrm{cm}^{-1} 2935,1725,1613,1597$, $1470,1319,1237,1154,1095,1017$ and $842 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.85(2$ H, d, J8.6), 7.71 ($1 \mathrm{H}, \mathrm{d}, J 8.2$), 7.35-7.28 ($2 \mathrm{H}, \mathrm{m}$), 7.21-7.15 (4 $\mathrm{H}, \mathrm{m}), 4.30(2 \mathrm{H}, \mathrm{t}, J 8.21), 3.40(2 \mathrm{H}, \mathrm{t}, J 6.64), 2.42(3 \mathrm{H}, \mathrm{s})$, $1.81(2 \mathrm{H}, \mathrm{p}, J 7.61), 1.57-1.50(2 \mathrm{H}, \mathrm{m})$ and $1.38-1.22(4 \mathrm{H}, \mathrm{m})$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 144.5,138.7,138.5,134.8,129.9,127.7,125.6,125.4$, $122.9,121.1,110.9,110.6,44.8,33.6,32.5,29.7,27.7,25.9$ and 21.6 (Found: $M, 433.0711$. Calc. for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{BrNO}_{2} \mathrm{~S}: M$, 433.0707).
(E)/(Z)-1-(3-Bromoprop-2-enyl)-2-[(4-methylphenyl)sul-fonyl]-1H-indole 29a/b. Compounds 29a/b were prepared in 86% yield ($E: Z, 45: 55$) according to the general procedure from compound $2(1.1 \mathrm{mmol})$, $\mathrm{KOH}(3.4 \mathrm{mmol})$ and $1,3-$ dibromopropene (3.33 mmol). Purification (SiO_{2}, petroldiethyl ether, $50: 1,20: 1,6: 1,2: 1$) gave the title compound 29a/b, mp $70-73^{\circ} \mathrm{C}$ (hexane-diethyl ether) (Found: C, 55.4; $\mathrm{H}, 4.05 ; \mathrm{Br}, 20.5 ; \mathrm{N}, 3.55 ; \mathrm{S}, 8.2 . \mathrm{C}_{18} \mathrm{H}_{16} \mathrm{BrNO}_{2} \mathrm{~S}$ requires C, 55.39 ; H, 4.13; Br, 20.47; N, 3.59; S, 8.22%) (Found: M, 389.0085. Calc. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{BrNO}_{2} \mathrm{~S}: M, 389.0086$); $v_{\text {max }}$ (film)/ $\mathrm{cm}^{-1} 2926,2305,1598,1494,1455,1320,1289,1154,1018$ and 969 . Further purification by preparative TLC furnished the individual isomers; 29a (E) : $R_{\mathrm{f}}\left(\mathrm{SiO}_{2}\right.$, petrol-diethyl ether, 2:1) $0.31 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.74(2 \mathrm{H}, \mathrm{d}, J 8.6), 7.66(1 \mathrm{H}, \mathrm{d}, J 7.81), 7.30-$ $7.27(1 \mathrm{H}, \mathrm{m}), 7.25(2 \mathrm{H}, \mathrm{d}, J 7.81), 7.18-7.11$ (3 H, m), 5.94-5.84 $(1 \mathrm{H}, \mathrm{m}, J 13.67), 5.61-5.55(1 \mathrm{H}, \mathrm{m}, J 13.68), 5.04(2 \mathrm{H}, \mathrm{dd}, J$ 5.86 and 1.96) and $2.34(3 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 145.8,139.7,136.3$, $133.2,130.0,127.9,126.2,125.5,123.1,121.7,111.5,110.6$, 108.5, 45.7, 26.0 and 21.6. 29b $(Z): R_{\mathrm{f}}\left(\mathrm{SiO}_{2}\right.$, petroldiethyl ether, 2:1) $0.42 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.74(2 \mathrm{H}, \mathrm{d}, J 8.6), 7.65$ (1 H, d, J7.81), 7.29-7.27 (1 H, m), 7.26(2 H, d, J7.81), 7.18-7.11 (3 $\mathrm{H}, \mathrm{m}), 6.19-6.16(1 \mathrm{H}, \mathrm{m}, J 7.42), 5.83-5.80(1 \mathrm{H}, \mathrm{m}, J 7.03)$, $5.04(2 \mathrm{H}, \mathrm{dd}, J 5.86$ and 1.95$)$ and $2.34(3 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ $144.7,138.9,138.2,134.9,130.0,127.8,126.0,125.4,122.9$, 121.5, 111.3, 110.9, 109.7, 44.4, 25.7 and 21.6.

1-(o-Bromobenzyl)-2-[(4-methylphenyl)sulfonyl]-1 \boldsymbol{H}-indole 30. Compound 30 was prepared in 68% yield according to the general procedure from compound $2(0.37 \mathrm{mmol})$, KOH (0.93 mmol) and 2-bromobenzyl bromide (1.11 mmol). Purification
(SiO_{2}, petrol-diethyl ether $100: 0,50: 1,20: 1,6: 1,3: 1$) gave the title compound 30 as a white solid, $\mathrm{mp} 150-152^{\circ} \mathrm{C} ; R_{\mathrm{f}}\left(\mathrm{SiO}_{2}\right.$, petrol-diethyl ether 2:1) 0.42 (Found: C, $60.0 ; \mathbf{H}, 4.3 ; \mathrm{Br}, 18.2$; $\mathrm{N}, 2.9 ; \mathrm{S}, 7.3 . \mathrm{C}_{22} \mathrm{H}_{18} \mathrm{BrNO}_{2} \mathrm{~S}$ requires $\mathrm{C}, 60.00 ; \mathrm{H}, 4.12 ; \mathrm{Br}$, 18.15; N, 3.18; S, 7.28%); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 2980,2933,1597$, $1519,1475,1325,1153,1090$ and $1019 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.80(1 \mathrm{H}, \mathrm{d}$, $J 7.91), 7.68(2 \mathrm{H}, \mathrm{d}, J 7.55), 7.56(1 \mathrm{H}, \mathrm{s}), 7.51(1 \mathrm{H}, \mathrm{d}, J 7.95)$, $7.30-7.22(2 \mathrm{H}, \mathrm{m}), 7.11$ ($1 \mathrm{H}, \mathrm{d}, J 8.33$), $7.02(2 \mathrm{H}, \mathrm{d}, J 7.9), 6.95$ $(1 \mathrm{H}, \mathrm{t}, J 7.81), 6.67(1 \mathrm{H}, \mathrm{t}, J 7.80), 5.7(1 \mathrm{H}, \mathrm{d}, J 7.3), 5.6(2 \mathrm{H}, \mathrm{s})$ and $2.04(3 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 144.2,139.2,137.3,135.9,135.4$, 132.2, 129.7, 129.6, 128.1, 127.8, 127.3, 126.6, 126.1, 123.0, 121.6, 121.3, 111.1, 110.8, 48.0 and 21.4 (Found: $M, 439.0242$. Calc. for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{BrNO}_{2} \mathrm{~S}: M, 439.0242$).

General procedure: \boldsymbol{N}-acylation

To a stirred solution of the amine, N, N-dimethylaminopyridine (DMAP) and distilled $\mathrm{Et}_{3} \mathrm{~N}$ in DMF at $0^{\circ} \mathrm{C}$ was added 3bromopropionyl bromide and the reaction allowed to warm to room temperature. Addition of water, extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, drying and evaporation in vacuo gave the crude product which was purified to give the product.
N-(3-Bromopropionyl)-7-[(4-methylphenyl)sulfonyl]indoline 35. Compound 35 was prepared in 77% yield according to the general procedure from compound $34(0.63 \mathrm{mmol})$, DMF (1.8 cm^{3}), DMAP (0.15 mmol$), \mathrm{Et}_{3} \mathrm{~N}(0.76 \mathrm{mmol})$ and 3-bromopropionyl bromide (2.7 mmol). Purification (SiO_{2}, petroldiethyl ether $1: 1,1: 2,1: 3,1: 4)$ gave the title compound 35 as a cream solid, $\mathrm{mp} 155-156{ }^{\circ} \mathrm{C}$; $R_{\mathrm{f}}\left(\mathrm{SiO}_{2}\right.$, petrol-ethyl acetate, 1:3) $0.7 ; v_{\max }($ film $) / \mathrm{cm}^{-1} 2929,1681,1598,1441,1433$, 1391, 1304, 1130, 1082, 813 and 666; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.81(2 \mathrm{H}, \mathrm{d}, J$ 8.3), 7.72 ($1 \mathrm{H}, \mathrm{d}, J 8$), 7.42 ($1 \mathrm{H}, \mathrm{dd}, J 8$ and 1), 7.29 ($2 \mathrm{H}, \mathrm{d}, J 8$), $7.19(1 \mathrm{H}, \mathrm{t}, J 7.7), 4.23(2 \mathrm{H}, \mathrm{br} \mathrm{t}), 3.73(2 \mathrm{H}, \mathrm{t}, J 7), 3.18(2 \mathrm{H}, \mathrm{t}$, $J 6.9), 3.07(2 \mathrm{H}, \mathrm{t})$ and $2.41(3 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 143.6,140.2$, $139.0,137.4,131.6,129.5,129.2,127.5,125.3,51.1,38.6,29.6$, 27.6 and 21.6 (Found: $M, 407.0191$. Calc. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{BrNO}_{3} \mathrm{~S}$: M, 407.0191).
s-trans/s-cis- N -(3-Bromopropionyl)-2-(phenylsulfonyl)aniline 37. Compound 37 was prepared in 42% yield according to the general procedure from compound $36(0.99 \mathrm{mmol})$, DMF (2 cm^{3}), DMAP (0.203 mmol), $\mathrm{Et}_{3} \mathrm{~N}(1.08 \mathrm{mmol})$ and $3-$ bromopropionyl chloride (3.2 mmol). Purification $\left(\mathrm{SiO}_{2}\right.$, petrol-ethyl acetate, $10: 1,5: 1$) gave the title compound 37 as an oil; $R_{\mathrm{f}}\left(\mathrm{SiO}_{2}\right.$, petrol-ethyl acetate, 1:1) $0.7 ; v_{\max }($ film $) / \mathrm{cm}^{-1}$ $3359,1704,1589,1530,1467,1439,1369,1311,1292,1150$, $1092,1024,1000,925,592$ and $569 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 9.78(1 \mathrm{H}$, br s), 8.44 ($1 \mathrm{H}, \mathrm{d}, J 8.3$), $8.04(1 \mathrm{H}, \mathrm{d}, J 8.1), 7.88(2 \mathrm{H}, \mathrm{d}, J 7.2), 7.60$ $(2 \mathrm{H}, \mathrm{m}), 7.51(2 \mathrm{H}, \mathrm{dt}, J .7 .2$ and 1.3$), 7.26(1 \mathrm{H}, \mathrm{dt}, J 7.7$ and $1.1), 3.88$ ($0.8 \mathrm{H}, \mathrm{t}, J 6.2$), 3.7 ($1.2 \mathrm{H}, \mathrm{t}, J 6.4$), 3.03 ($1.2 \mathrm{H}, \mathrm{t}, J$ $6.4)$ and $2.9(0.8 \mathrm{H}, \mathrm{t}, J 6.2) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 167.8,167.6,140.8$, 136.6, 135.1, 133.8, 129.7, 129.4, 127.7, 126.9, 124.4, 122.8, $41.0,40.9,39.4$ and 26.3 (Found: $M, 366.9878$. Calc. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{BrNO}_{3} \mathrm{~S}: ~ M, ~ 366.9878$).

General procedure: preparation of 2-substituted N-iodoalkylindoles

A solution of N-bromoalkylindole in acetone ($10 \mathrm{~cm}^{3} \mathrm{mmol}^{-1}$) was added dropwise to a solution of NaI in acetone. The reaction was stirred at ambient temperature overnight and after the standard work-up the crude product was purified by recrystallisation or silica gel chromatography.
1-(3-Iodopropyl)-2-[(4-methylphenyl)sulfonyl]-1 H -indole 9. Compound 9 was prepared in 81% yield according to the general procedure from compound $5(0.26 \mathrm{mmol})$ and $\mathrm{NaI}(0.33$ mmol) in acetone ($2.2 \mathrm{~cm}^{3}$), as a white solid, $\mathrm{mp} 110-111^{\circ} \mathrm{C}$ (hexane-diethyl ether) (Found C, 49.1; H, 4.0; N, 3.2; S, 7.3. $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{INO}_{2} \mathrm{~S}$ requires $\mathrm{C}, 49.21 ; \mathrm{H}, 4.13 ; \mathrm{N}, 3.19 ; \mathrm{S}, 7.30 \%$; $R_{\mathrm{f}}\left(\mathrm{SiO}_{2}\right.$, petrol-diethyl ether, 2:1) $0.42 ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 2930$, $2849,2359,1595,1506,1474,1443,1319,1292,1154$ and 1096; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.86(2 \mathrm{H}, \mathrm{d}, J 8.4), 7.71(1 \mathrm{H}, \mathrm{d}, J 8.01), 7.40-7.37(2$ $\mathrm{H}, \mathrm{m}), 7.34(1 \mathrm{H}, \mathrm{d}, J 6.45), 7.22-7.16$ ($3 \mathrm{H}, \mathrm{m}$), $4.37(2 \mathrm{H}, \mathrm{t}, J$
7.62), $3.15(2 \mathrm{H}, \mathrm{t}, J 6.84), 2.42(3 \mathrm{H}, \mathrm{s})$ and $2.04(2 \mathrm{H}, \mathrm{p}, J 7.62)$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 144.7,138.8,138.3,134.9,130.0,127.8,127.7,125.9$, $123.0,121.4,111.3,110.5,45.6,33.3,21.6$ and 4.17 (Found: M, 439.0105. Calc. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{INO}_{2} \mathrm{~S}: M, 439.0103$).

1-(3-Iodopropyl)-2-(phenylsulfinyl)-1 H -indole 22. Compound 22 was prepared in 64% yield according to the general procedure from compound $19(0.46 \mathrm{mmol})$ and $\mathrm{NaI}(0.57$ mmol) in acetone ($1.6 \mathrm{~cm}^{3}$). Purification (SiO_{2}, petroldiethyl ether $3: 1,2: 1,1: 1$) gave the title compound 22 as an oil. The product was repurified by HPLC (\mathbf{r} / p, acetonitrile/ water: ammonium acetate); $R_{\mathrm{f}}\left(\mathrm{SiO}_{2}\right.$, petrol-diethyl ether, 2:1) $0.28 ; v_{\max }$ (film) $/ \mathrm{cm}^{-1} 2930,2852,1723,1612,1581,1444,1312$, 1139,1217 and 1042; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.69(2 \mathrm{H}, \mathrm{d}, J 8.0), 7.65-7.62$ ($3 \mathrm{H}, \mathrm{m}$), 7.55-7.52 ($1 \mathrm{H}, \mathrm{m}$), 7.42-7.36 ($2 \mathrm{H}, \mathrm{m}$), 7.21-7.17 (1 H , $\mathrm{m}), 6.93(1 \mathrm{H}, \mathrm{s}), 4.40-4.24(2 \mathrm{H}, \mathrm{m}), 3.18-3.14(2 \mathrm{H}, \mathrm{m}), 2.23-$ $2.18(1 \mathrm{H}, \mathrm{m})$ and $1.80-1.68(1 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 142.4,139.1$, $136.7,130.8,129.3,126.0,125.1,125.0,122.4,120.9,110.1$, 109.5, 45.1, 32.9 and 2.0 (Found: M, 409.005. Calc. for $\mathrm{C}_{17} \mathrm{H}_{16}$ INOS: $M, 409.006$)

1-(3-Iodopropyl)-2-(phenylsulfanyl)-1 \boldsymbol{H}-indole 16. Compound 16 was prepared in 77% yield, according to the general procedure from compound $13(0.27 \mathrm{mmol})$ and $\mathrm{NaI}(0.34$ $\mathrm{mmol})$ in acetone ($1.5 \mathrm{~cm}^{3}$). Purification $\left(\mathrm{SiO}_{2}\right.$, petrol- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $50: 1,20: 1,12: 1)$ gave the title compound 16 as an oil; $R_{\mathrm{f}}\left(\mathrm{SiO}_{2}\right.$, petrol-diethyl ether, $25: 1) 0.5 ; v_{\max }($ film $) / \mathrm{cm}^{-1} 2935,1771,1582$, 1441, 1353, 1313, 1243, 1173 and 1024; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.64(1 \mathrm{H}, \mathrm{d}$, $J 8.01), 7.42$ ($1 \mathrm{H}, \mathrm{d}, J 8.01$), $7.31-7.25(2 \mathrm{H}, \mathrm{m}), 7.23-7.18$ (3 H , m), 7.16-7.08 ($2 \mathrm{H}, \mathrm{m}$), 7.08 ($1 \mathrm{H}, \mathrm{d}, J 1.17$), 4.26-4.21 ($2 \mathrm{H}, \mathrm{t}$, $J 6), 3.03(2 \mathrm{H}, \mathrm{t}, J 6.9)$ and $2.16(2 \mathrm{H}, \mathrm{p}, J 6) ; \delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 138.1$, $136.8,129.2,127.5,126.9,126.7,126.1,123.2,121.0,120.1$, 112.7, 110.0, 44.2, 33.8 and 2.2 (Found: $M, 393.0048$. Calc. for $\mathrm{C}_{17} \mathrm{H}_{16}$ INS: $M, 393.0048$).
1-(4-Iodobutyl)-2-[(4-methylphenyl)sulfonyl]-1 H -indole $\mathbf{1 0}$. Compound 10 was prepared in 68% yield according to the general procedure from compound $6(0.33 \mathrm{mmol})$ and $\mathrm{NaI}(0.42$ mmol) in acetone ($2.2 \mathrm{~cm}^{3}$), as a white solid, mp 141-143 ${ }^{\circ} \mathrm{C}$ (petrol-diethyl ether) (Found: C, 49.75; H, 4.4; I, 28.05; N, 3.0; $\mathrm{S}, 6.45 . \mathrm{C}_{19} \mathrm{H}_{20} \mathrm{INO}_{2} \mathrm{~S}$ requires C, 50.33 ; $\mathrm{H}, 4.45$; I, 28.01; N , $3.09 ; \mathrm{S}, 7.06 \%) ; R_{\mathrm{f}}\left(\mathrm{SiO}_{2}\right.$, petrol-diethyl ether, 2:1) 0.31 ; $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 2957,1719,1598,1509,1442,1329,1291,1152$ and 1096; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.88(2 \mathrm{H}, \mathrm{d}, J 8.5), 7.75(1 \mathrm{H}, \mathrm{d}, J 8), 7.37-$ $7.29(3 \mathrm{H}, \mathrm{m}), 7.23-7.16(3 \mathrm{H}, \mathrm{m}), 4.34(2 \mathrm{H}, \mathrm{t}, J 7.81), 3.16(2 \mathrm{H}$, $\mathrm{t}, J 6.65), 2.45(3 \mathrm{H}, \mathrm{s})$ and $1.81-1.78(4 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 144.6$, $138.7,138.5,134.8,130.0,127.7,125.7,125.5,123.0,121.2$, 111.1, 110.6, 43.8, 30.9, 30.6, 21.6 and 5.3 (Found: $M, 453.0260$. Calc. for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{INO}_{2} \mathrm{~S}: M, 453.0260$).
1-(4-Iodobutyl)-2-(phenylsulfinyl)-1 \boldsymbol{H}-indole 23. Compound 23 was prepared in 54% yield according to the general procedure from compound $20(0.59 \mathrm{mmol})$ and $\mathrm{NaI}(0.76$ mmol) in acetone ($2.0 \mathrm{~cm}^{3}$). Purification (SiO_{2}, petroldiethyl ether, $2: 1,1: 1$) gave the title compound 23 as a white solid, $\mathrm{mp} 74-76^{\circ} \mathrm{C}$ (petrol-diethyl ether); $R_{\mathrm{f}}\left(\mathrm{SiO}_{2}\right.$, petroldiethyl ether, 2:1) $0.28 ; v_{\max }($ film $) / \mathrm{cm}^{-1} 2929,2869,1724,1612$, $1582,1444,1312,1212,1112$ and $1043 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.68(2 \mathrm{H}, \mathrm{d}$, $J 8.01), 7.65-7.62(3 \mathrm{H}, \mathrm{m}), 7.55-7.51(1 \mathrm{H}, \mathrm{m}), 7.37-7.27$ (2 H , $\mathrm{m}), 7.20-7.17(1 \mathrm{H}, \mathrm{m}), 6.93(1 \mathrm{H}, \mathrm{s}), 4.32-4.12(2 \mathrm{H}, \mathrm{m}), 3.11-$ $3.00(2 \mathrm{H}, \mathrm{m}), 1.82-1.69(2 \mathrm{H}, \mathrm{m})$ and 1.33-1.22 $(2 \mathrm{H}, \mathrm{m})$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 142.6,139.0,136.7,130.7,129.2,126.1,125.0,122.4$, 120.8, 110.1, 109.5, 43.5, 30.6, 30.4 and 5.4 (Found: M, 423.0154. Calc. for $\mathrm{C}_{18} \mathrm{H}_{18}$ INOS: $M, 423.0154$).

1-(4-Iodobutyl)-2-(phenylsulfanyl)-1 \boldsymbol{H}-indole 17. Compound 17 was prepared in 75% yield according to the general procedure from compound $14(0.139 \mathrm{mmol})$ and $\mathrm{NaI}(0.18$ mmol) in acetone ($1.7 \mathrm{~cm}^{3}$). Purification (SiO_{2}, petrol- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $50: 1,20: 1,10: 1)$ gave the title compound 17 as an oil; $R_{\mathrm{f}}\left(\mathrm{SiO}_{2}\right.$, petrol-diethyl ether, $25: 1) 0.5 ; v_{\max }($ film $) / \mathrm{cm}^{-1} 2927,1582,1452$, $1352,1313,1232,1080,1024$ and $1000 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.66(1 \mathrm{H}, \mathrm{d}$, $J 7.82$), $7.35(1 \mathrm{H}, \mathrm{d}, J 7.81), 7.30(2 \mathrm{H}, \mathrm{d}, J 6.74), 7.27-7.15(3 \mathrm{H}$, $\mathrm{m})$, $7.15-7.11(1 \mathrm{H}, \mathrm{m}), 7.09-7.05(1 \mathrm{H}, \mathrm{m}), 6.94(1 \mathrm{H}, \mathrm{d}, J 0.59)$, 4.21-4.15 ($2 \mathrm{H}, \mathrm{m}$), 3.07-3.02 ($2 \mathrm{H}, \mathrm{m}$) and 1.79-1.70 $(4 \mathrm{H}, \mathrm{m})$;
$\delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 137.9,137.0,129.1,127.4,126.7,126.6,126.0,123.0$ 121.0, 120.0, 112.4, 110.0, 42.5, 30.9, 30.6 and 5.7 (Found: M, 407.0205. Calc. for $\mathrm{C}_{18} \mathrm{H}_{18}$ INS: $M, 407.0205$).

1-(5-Iodopentyl)-2-[(4-methylphenyl)sulfonyl]-1 H -indole 11. Compound 11 was prepared in 78% yield according to the general procedure from compound $7(0.22 \mathrm{mmol})$ and $\mathrm{NaI}(0.28$ mmol) in acetone ($2.2 \mathrm{~cm}^{3}$), as a white solid, $\mathrm{mp} 110-112^{\circ} \mathrm{C}$ (hexane-diethyl ether) (Found: C, 51.6; H, 4.8; I, 27.1; N, 3.0; S, 6.8. $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{INO}_{2}$ S requires $\mathrm{C}, 51.40 ; \mathrm{H}, 4.74 ; \mathrm{I}, 27.15$; N, 3.00; $\mathrm{S}, 6.86 \%) ; R_{\mathrm{f}}\left(\mathrm{SiO}_{2}\right.$, petrol-diethyl ether, 2:1) $0.29 ; v_{\text {max }}\left(\mathrm{cm}^{-1}\right)$ 2931, 2863, 1735, 1597, 1444, 1319, 1152 and 1095; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.85(2 \mathrm{H}, \mathrm{d}, J 8.4), 7.71(1 \mathrm{H}, \mathrm{d}, J 8.01), 7.39-$ $7.31(2 \mathrm{H}, \mathrm{m}), 7.21-7.15(4 \mathrm{H}, \mathrm{m}), 4.29(2 \mathrm{H}, \mathrm{t}, J 8.01), 3.15$ $(2 \mathrm{H}, \mathrm{t}, J 7.03), 2.42(3 \mathrm{H}, \mathrm{s}), 1.80(2 \mathrm{H}, \mathrm{p}, J 7.23)$ and $1.55-$ $1.35(4 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 144.5,138.7,138.4,134.7,130.0$, $127.7,125.6,125.4,123.0,121.1,110.9,110.5,44.6,32.9,28.8$, 27.7, 21.6 and 6.3 (Found: $M, 467.0418$. Calc. for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{INO}_{2} \mathrm{~S}: M, 467.0416$).
1-(5-Iodopentyl)-2-(phenylsulfinyl)-1 H-indole 24. Compound 24 was prepared in 96% yield according to the general procedure from compound $21(0.21 \mathrm{mmol})$ and $\mathrm{NaI}(0.27$ mmol) in acetone ($2.5 \mathrm{~cm}^{3}$). Purification, $\left(\mathrm{SiO}_{2}\right.$, petroldiethyl ether, $2: 1,1: 1$) gave the title compound 24 as a white solid, mp $91-93^{\circ} \mathrm{C}$ (petrol-diethyl ether); $R_{\mathrm{f}}\left(\mathrm{SiO}_{2}\right.$, petroldiethyl ether, 2:1) $0.28 ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 2927,2855,1724,1612$, 1581, 1444, 1348, 1086 and 1044; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.68(2 \mathrm{H}, \mathrm{d}, J$ 8.03), 7.66-7.63 ($3 \mathrm{H}, \mathrm{m}$), 7.55-7.50 ($1 \mathrm{H}, \mathrm{m}$), 7.34-7.27 (2 H , $\mathrm{m}), 7.19-7.15(1 \mathrm{H}, \mathrm{m}), 6.94(1 \mathrm{H}, \mathrm{d}, J 0.39), 4.34-4.23(1 \mathrm{H}, \mathrm{m})$, 4.16-4.07 ($1 \mathrm{H}, \mathrm{m}$), $3.14(2 \mathrm{H}, \mathrm{t}, J 6.92)$, 1.76-1.67 ($2 \mathrm{H}, \mathrm{m}$), 1.37-1.27 ($2 \mathrm{H}, \mathrm{m}$) and $1.15-0.89(2 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 142.7$, 139.0, 136.7, 130.6, 129.2, 126.1, 125.0, 124.9, 122.4, 120.7 , 110.1, 109.4, 44.4, 32.8, 28.4, 27.7 and 6.4 (Found: $M, 437.0310$ Calc. for $\mathrm{C}_{19} \mathrm{H}_{20}$ INOS: $M, 437.0310$).
1-(5-Iodopentyl)-2-(phenylsulfanyl)-1 H -indole 18. Compound 18 was prepared in 63% yield according to the general procedure from compound $15(0.77 \mathrm{mmol})$ and $\mathrm{NaI}(0.97$ mmol) in acetone ($3.0 \mathrm{~cm}^{3}$). Purification, (SiO_{2}, petrol$\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 5: 1\right)$ gave the title compound $\mathbf{1 8}$ as an oil; $R_{\mathrm{f}}\left(\mathrm{SiO}_{2}\right.$, petrol-diethyl ether, 25:1) $0.5 ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 2927,1771,1582$, $1452,1352,1313,1277,1081,1024$ and $1000 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.70(1$ $\mathrm{H}, \mathrm{d}, J 7.7), 7.35-7.11(8 \mathrm{H}, \mathrm{m}), 6.97(1 \mathrm{H}, \mathrm{d}, J 0.59), 4.18(2 \mathrm{H}, \mathrm{t}$, $J 7.52$), 3.12 ($2 \mathrm{H}, \mathrm{t}, J 7.03$), 1.76-1.65 ($2 \mathrm{H}, \mathrm{m}$), 1.62-1.54 (2 H , quintet, $J 8.01)$ and $1.43-1.25(2 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 137.9,137.0$, 129.1, 127.4, 126.8, 126.7, 126.0, 122.9, 121.0, 119.9, 112.3, $110.0,43.4,32.9,28.9,27.8$ and 6.3 (Found: $M, 421.0363$. Calc. for $\mathrm{C}_{19} \mathrm{H}_{20}$ INS: $M, 421.0361$).

1-(6-Iodohexyl)-2-[(4-methylphenyl)sulfonyl]-1 \boldsymbol{H}-indole 12. Compound 12 was prepared in 89% yield according to the general procedure from compound $8(0.22 \mathrm{mmol})$ and $\mathrm{NaI}(0.39$ $\mathrm{mmol})$ in acetone $\left(1.7 \mathrm{~cm}^{3}\right)$ as a white solid, $\mathrm{mp} 81-83^{\circ} \mathrm{C}$ (petrol-diethyl ether) (Found: C, 52.3; H, 5.0; I, 26.1; N, 2.95; S, 6.55. $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NIO}_{2} \mathrm{~S}$ requires C, $52.40 ; \mathrm{H}, 5.03 ; \mathrm{I}, 26.36 ; \mathrm{N}, 2.91$; $\mathrm{S}, 6.66 \%) ; R_{\mathrm{f}}\left(\mathrm{SiO}_{2}\right.$, petrol-diethyl ether, 2:1) $0.42 ; v_{\max }{ }^{-}$ (film) $/ \mathrm{cm}^{-1} 2930,2857,1728,1595,1504,1443,1318,1184,1152$, 1095 and $900 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.85(2 \mathrm{H}, \mathrm{d}, J 8.4), 7.71(1 \mathrm{H}, \mathrm{d}, J$ 8.01), $7.38-7.27(2 \mathrm{H}, \mathrm{m}), 7.21-7.15(4 \mathrm{H}, \mathrm{m}), 4.29(2 \mathrm{H}, \mathrm{t}, J$ 8.01), $3.18(2 \mathrm{H}, \mathrm{t}, J 7.03), 2.42(3 \mathrm{H}, \mathrm{s}), 1.8(2 \mathrm{H}, \mathrm{p}, J 7.03), 1.57-$ $1.50(2 \mathrm{H}, \mathrm{m})$ and $1.38-1.25(4 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 144.5,138.7$, $138.5,134.8,130.0,127.7,125.6,125.4,123.0,121.1,111.0$, 110.6, 44.6, 32.9, 32.2, 28.8, 27.7, 21.6 and 6.2 (Found: M, 481.0577. Calc. for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{INO}_{2} \mathrm{~S}: M, 481.0573$).

General procedure: radical cyclizations

A solution of $\mathrm{Bu}_{3} \mathrm{SnH}$ and AIBN in toluene was added to a solution of cyclization precursor in toluene at reflux. After the addition was complete the solution was stirred at reflux until the reaction was deemed complete (TLC analysis). The reaction mixture was allowed to cool to room temperature and after the 'KF work-up' purification was carried 'out using silica-gel chromatography.

2,3-Dihydro-1H-pyrrolo[1,2-a] indole 25. Compound 25 was prepared in 75% yield according to the general procedure from sulfone $5(0.2 \mathrm{mmol})$ in toluene ($4.0 \mathrm{~cm}^{3}$), $\mathrm{Bu}_{3} \mathrm{SnH}(0.48 \mathrm{mmol})$ and AIBN $(0.04 \mathrm{mmol})$ in toluene $\left(10 \mathrm{~cm}^{3}\right), 5 \mathrm{~min}$ addition, 2 h reflux.
Compound 25 was prepared in 71% yield according to the general procedure from sulfone $9(0.073 \mathrm{mmol})$ in toluene (1.5 $\left.\mathrm{cm}^{3}\right), \mathrm{Bu}_{3} \mathrm{SnH}(0.15 \mathrm{mmol})$ and AIBN $(0.073 \mathrm{mmol})$ in toluene $\left(2 \mathrm{~cm}^{3}\right), 15 \mathrm{~min}$ addition, 3 h reflux.

Compound 25 was prepared in 46% yield according to the general procedure from sulfoxide $22(0.087 \mathrm{mmol})$ in toluene $\left(4.5 \mathrm{~cm}^{3}\right), \mathrm{Bu}_{3} \mathrm{SnH}(0.18 \mathrm{mmol})$ and AIBN (0.018 mmol) in toluene ($9.5 \mathrm{~cm}^{3}$), 4 h addition.

Compound 25 was prepared in 25% yield according to the general procedure from sulfide $16(0.17 \mathrm{mmol})$ in toluene (8.5 $\left.\mathrm{cm}^{3}\right), \mathrm{Bu}_{3} \mathrm{SnH}(0.37 \mathrm{mmol})$ and $\operatorname{AIBN}(0.034 \mathrm{mmol})$ in toluene $\left(20 \mathrm{~cm}^{3}\right), 4.5 \mathrm{~h}$ addition.
Purification $\left(\mathrm{SiO}_{2}\right.$, petrol-diethyl ether, $100: 0,75: 1,50: 1$, then $20: 1$) gave the title compound 25 as a white solid, $\mathrm{mp} 79-$ $81^{\circ} \mathrm{C}$ (lit., $\left.{ }^{2} 79-80^{\circ} \mathrm{C}\right) ; R_{\mathrm{f}}\left(\mathrm{SiO}_{2}\right.$, petrol-diethyl ether, $\left.75: 1\right)$ $0.25 ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 2931,1728,1593,1455,1374,1338,1220$, 1149,1121 and $1041 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.56(1 \mathrm{H}, \mathrm{dd}, J 6.65$ and 1.56), 7.25-7.22 ($1 \mathrm{H}, \mathrm{m}$), 7.14-7.05 ($2 \mathrm{H}, \mathrm{m}$), $6.16(1 \mathrm{H}, \mathrm{d}, J 0.98), 4.09$ ($2 \mathrm{H}, \mathrm{t}, J 7.03$), 3.05-3.00 $(2 \mathrm{H}, \mathrm{m})$ and 2.63-2.60 (2 H , quintet, J 7.6); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 144.5,133.3,132.7,120.3,120.1,119.1,109.3$, $92.3,43.6,27.9$ and 24.3 (Found: $M, 157.0891$. Calc. for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}: M, 157.0891$).
6,7,8,9-Tetrahydropyrido [1,2-a]indole 26. Compound 26 was prepared in 84% yield according to the general procedure from sulfone $6(0.185 \mathrm{mmol})$ in toluene ($4.0 \mathrm{~cm}^{3}$), $\mathrm{Bu}_{3} \mathrm{SnH}(0.44$ mmol) and AIBN (0.037 mmol) in toluene $\left(9.5 \mathrm{~cm}^{3}\right), 5 \mathrm{~min}$ addition, 2 h reflux.
Compound 26 was prepared in 71% yield according to the general procedure from sulfone $10(0.099 \mathrm{mmol})$ in toluene (3.0 $\left.\mathrm{cm}^{3}\right), \mathrm{Bu}_{3} \mathrm{SnH}(0.20 \mathrm{mmol})$ and AIBN $(0.099 \mathrm{mmol})$ in toluene $\left(3.0 \mathrm{~cm}^{3}\right), 15 \mathrm{~min}$ addition, 2.5 h reflux.
Compound 26 was prepared in 53% yield according to the general procedure from sulfoxide $23(0.062 \mathrm{mmol})$ in toluene $\left(3.5 \mathrm{~cm}^{3}\right), \mathrm{Bu}_{3} \mathrm{SnH}(0.15 \mathrm{mmol})$ and $\operatorname{AIBN}(0.014 \mathrm{mmol})$ in toluene ($8.0 \mathrm{~cm}^{3}$), 4 h addition, 2 h reflux.
Compound 26 was prepared in 51% yield according to the general procedure from sulfide $17(0.086 \mathrm{mmol})$ in toluene (2.0 $\left.\mathrm{cm}^{3}\right), \mathrm{Bu}_{3} \mathrm{SnH}(0.22 \mathrm{mmol})$ and $\operatorname{AIBN}(0.0171 \mathrm{mmol})$ in toluene $\left(11 \mathrm{~cm}^{3}\right), 4 \mathrm{~h}$ addition.
Purification $\left(\mathrm{SiO}_{2}\right.$, petrol-diethyl ether, $\left.50: 1\right)$ gave the title compound 26 as a white solid, $\mathrm{mp} 53-54^{\circ} \mathrm{C}$ (lit., ${ }^{2} 52^{\circ} \mathrm{C}$); R_{f} (SiO_{2}, petrol-diethyl ether, 20:1) $0.25 ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 2931$, 1867, 1728, 1580, 1477, 1455, 1364, 1133, 1073 and 1012; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.53(1 \mathrm{H}, \mathrm{dd}, J 6.83$ and 1.60$), 7.28-7.22(1 \mathrm{H}, \mathrm{m})$, 7.16-7.04 ($2 \mathrm{H}, \mathrm{m}$), $6.18(1 \mathrm{H}, \mathrm{d}, J 0.78), 4.08(2 \mathrm{H}, \mathrm{t}, J 6.25)$, $3.01(2 \mathrm{H}, \mathrm{t}, J 6.45), 2.12-2.05(2 \mathrm{H}, \mathrm{m})$ and $2.04-1.90(2 \mathrm{H}, \mathrm{m})$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 137.1,136.3,128.2,120.1,119.6,108.5,97.5,42.3$, 24.3, 23.5 and 21.5 (Found: $M, 171.1048$. Calc. for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}$: $M, 171.1048)$.
7,8,9,10-Tetrahydro-6 H -azepino[1,2-a]indole 27. Compound 27 was prepared in 33% yield according to the general procedure from sulfone $11(0.133 \mathrm{mmol})$ in toluene ($3.0 \mathrm{~cm}^{3}$), $\mathrm{Bu}_{3} \mathrm{SnH}(0.33 \mathrm{mmol})$ and $\operatorname{AIBN}(0.133 \mathrm{mmol})$ in toluene (4.1 $\left.\mathrm{cm}^{3}\right), 5 \mathrm{~h}$ addition. Purification $\left(\mathrm{SiO}_{2}\right.$, petrol-diethyl ether, $100: 0,99: 1,50: 1,20: 1$, and then preparative TLC, petroldiethyl ether, $20: 1$) gave the title compound 27 as a white solid.

Compound 27 was prepared in 34% yield according to the general procedure from sulfoxide $24(0.079 \mathrm{mmol})$ in toluene (4 $\left.\mathrm{cm}^{3}\right), \mathrm{Bu}_{3} \mathrm{SnH}(0.15 \mathrm{mmol})$ and $\operatorname{AIBN}(0.014 \mathrm{mmol})$ in toluene ($8 \mathrm{~cm}^{3}$), 4 h addition. Purification (SiO_{2}, petrol-diethyl ether, $100: 0,99: 1,50: 1,20: 1$, and then preparative TLC, petroldiethyl ether $20: 1$), gave 27 as a white solid, $\mathrm{mp} 85-89^{\circ} \mathrm{C}$ (lit., ${ }^{2}$ $\left.87^{\circ} \mathrm{C}\right) ; R_{\mathrm{f}}\left(\mathrm{SiO}_{2}\right.$, petrol-diethyl ether, 0.4$) ; v_{\max }($ film $) / \mathrm{cm}^{-1}$ 2967, 2931, 1728, 1592, 1478, 1462, 1325, 1201, 1081 and 1015;
$\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.54(1 \mathrm{H}, \mathrm{d}, J 7.04), 7.29-7.21(1 \mathrm{H}, \mathrm{m}), 7.17-7.02(2$ $\mathrm{H}, \mathrm{m}), 6.25(1 \mathrm{H}, \mathrm{d}, J 0.78), 4.18-4.15(2 \mathrm{H}, \mathrm{m}), 2.93-2.89(2 \mathrm{H}$, $\mathrm{m})$ and $1.86-1.67(6 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 143.2,136.9,127.9$, $120.3,119.8,118.9,108.5,99.04,44.60,31.10,29.49,28.76$ and 28.17 (Found: $M, 185.1024$. Calc. for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}: M, 185.1024$).

9H-Pyrrolo $[1,2, a]$ indole 31. Compound 31 was prepared according to the general procedure from compound 29a/b (0.303 mmol) in toluene $\left(7.0 \mathrm{~cm}^{3}\right), \mathrm{Bu}_{3} \mathrm{SnH}(0.33 \mathrm{mmol})$ and AIBN (0.06 mmol) in toluene $\left(7.0 \mathrm{~cm}^{3}\right), 5 \mathrm{~min}$ addition, reflux 5 h . Chromatography (SiO_{2}, petrol-diethyl ether $100: 0,85: 1$) gave the title compound 31 and compound 29c as a mixture (ratio, 55:45), yield of 31 estimated at $29 \% ; R_{\mathrm{f}}\left(\mathrm{SiO}_{2}\right.$, hexanediethyl ether, 85:1) 0.43 ; ${ }^{1} \mathrm{H}$ NMR data of 31/29c were consistent with the literature data ${ }^{13}$ for 31; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.42-$ $7.09(9 \mathrm{H}, \mathrm{m}), 6.53(1 \mathrm{H}, \mathrm{dd}, J 3.92$ and 2.27$), 6.42(1 \mathrm{H}, \mathrm{dt}, J$ 3.1), 6.15-6.0 ($1 \mathrm{H}, \mathrm{m}$), 6.0-5.97 ($1 \mathrm{H}, \mathrm{m}$), 5.24-5.14 ($2 \mathrm{H}, \mathrm{m}$), 4.79-4.74 ($2 \mathrm{H}, \mathrm{m}$) and $3.86(2 \mathrm{H}, \mathrm{s})$; $\delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right)$ of 31135.0 , $127.5,125.9,123.1,113.2,109.8,109.7,101.7,99.11,99.10$ and 29.1.
$\mathbf{6 H}$-Isoindolo [2,1-a] indole 32. Compound 32 was prepared in 31% yield according to the general procedure from compound $30(0.15 \mathrm{mmol})$ in toluene ($4.0 \mathrm{~cm}^{3}$), $\mathrm{Bu}_{3} \mathrm{SnH}(0.17 \mathrm{mmol})$ and AIBN (0.0304 mmol) in toluene $\left(3.5 \mathrm{~cm}^{3}\right), 5 \mathrm{~min}$ addition, 5 h reflux. Purification (SiO_{2}, petrol-diethyl ether $100: 0,50: 1,30: 1$), gave the title compound 32 as a white solid, mp $209-211^{\circ} \mathrm{C} ; R_{\mathrm{f}}$ (hexane-diethyl ether, $30: 1$) 0.29 ; $v_{\max }($ film $) / \mathrm{cm}^{-1} 3421,2923,1654,1541,1506,1470,1439,1096$ and 1015; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.74-7.66(2 \mathrm{H}, \mathrm{m}), 7.48-7.41(1 \mathrm{H}, \mathrm{m})$, 7.42-7.32 ($3 \mathrm{H}, \mathrm{m}$), $7.21-7.19(2 \mathrm{H}, \mathrm{m}), 6.64(1 \mathrm{H}, \mathrm{d}, J 0.7)$ and $5.1(2 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 143.9,141.7,133.9,133.0,132.7$, $128.1,127.0,123.5,121.7,121.5,120.9,119.6,109.2,91.2$ and 48.4 (Found: $M, 205.0888$. Calc. for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}: M, 205.0891$).

1,2,5,6-Tetrahydro-4H-pyrrolo[3,2,1-ij]quinolin-4-one 38. Compound 38 was prepared in 57% yield according to the general procedure from compound $35(0.491 \mathrm{mmol})$ in toluene $\left(16.2 \mathrm{~cm}^{3}\right), \mathrm{Bu}_{3} \mathrm{SnH}(0.754 \mathrm{mmol})$ and AIBN (0.1 mmol) in toluene ($24.5 \mathrm{~cm}^{3}$), 3.5 h addition. Purification $\left(\mathrm{SiO}_{2}\right.$, petrol$\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 2$, then $\mathrm{Et}_{2} \mathrm{O}$) gave the title compound 38 as a white solid, mp $112-113^{\circ} \mathrm{C} ; R_{\mathrm{f}}\left(\mathrm{SiO}_{2}\right.$, petrol-ethyl acetate, $\left.1: 1\right) 0.3$; $v_{\max }$ (film) $/ \mathrm{cm}^{-1} 2960,2858,1672,1632,1598,1484,1440$, 1361, 1204 and 1074; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.08(1 \mathrm{H}, \mathrm{d}, J 7), 7.0(1 \mathrm{H}$, d, $J 6.9), 6.93(1 \mathrm{H}, \mathrm{t}, J 7.4), 4.08(2 \mathrm{H}, \mathrm{t}, J 8.3), 3.19(2 \mathrm{H}, \mathrm{t}$, $J 8.45), 2.97(2 \mathrm{H}, \mathrm{t}, J 7.8)$ and $2.69(2 \mathrm{H}, \mathrm{t}, J 7.7) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ 167.6, 141.3, 128.9, 125.3, 123.2, 123.2, 120.2, 45.1, 31.6, 27.7 and 24.4 (Found: M, 173.0841. Calc. for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}: M$, 173.08405).

Attempted cyclization of \boldsymbol{N}-(3-bromopropionyl)-2(phenylsulfonyl)aniline 37

To a stirred solution of bromide $37(99.0 \mathrm{mg}, 0.027 \mathrm{mmol})$ in toluene ($10.2 \mathrm{~cm}^{3}$) at reflux was added a solution of $\mathrm{Bu}_{3} \mathrm{SnH}$ ($132 \mathrm{mg}, 0.45 \mathrm{mmol}$) and AIBN ($11.5 \mathrm{mg}, 0.07 \mathrm{mmol}$) in toluene $\left(15 \mathrm{~cm}^{3}\right)$ at reflux over 3.5 h . The reaction was stirred at reflux for a further 3 h , allowed to cool to room temperature and the solvent removed in vacuo. Purification was carried out by silica gel chromatography (petrol-ethyl acetate, 6:1) to give an inseparable mixture containing the product 39 and starting bromide 37 (ratio 2:1, determined by integration). Selected ${ }^{1} \mathrm{H}$ NMR data, $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 9.59(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.49-2.42(2 \mathrm{H}, \mathrm{q}, J 7.5)$ and $1.25(3 \mathrm{H}, \mathrm{t}, J 6)$. Aromatic signals largely unchanged from starting bromide 37 .

Acknowledgements

We gratefully acknowledge financial assistance from the SERC/EPSRC (GR/H26673) and the Royal Society. We also thank the SERC/EPSRC and the Wellcome Foundation, Beckenham for generous support of our programme under the CASE scheme. We wish to express our gratitude to Professor C. J. Moody for enlightening discussions.

References

1 W. A. Carroll and P. A. Grieco, J. Am. Chem. Soc., 1993, 115, 1164; T. L. Gallagher, P. D. Magnus and J. C. Huffman, J. Am. Chem. Soc., 1982, 104, 1140 and references therein.
2 (a) F. E. Ziegler and L. O. Jeronic, J. Org. Chem., 1991, 56, 3479; (b) Y. Antonia, M. A. E. De La Cruz, E. Galeazzi, A. Guzman, B. L. Bray, R. Greenhouse, L. J. Kurz, D. A. Lustig, M. L. Maddox and J. M. Muchowski, Can. J. Chem., 1994, 72, 15; (c) F. E. Ziegler and M. Belema, J. Org. Chem., 1994, 59, 7962; (d) F. E. Ziegler and P. G. Harran, Tetrahedron Lett., 1993, 34, 4505; (e) F. E. Ziegler and P. G. Harran, J. Org. Chem., 1993, 58, 2768; (f) F. E. Ziegler and L. O. Jeroncic, J. Org. Chem., 1991, 56, 3479; (g) C.-C. Yang, H.-T. Chang and J.-M. Fang, J. Org. Chem., 1993, 58, 3100.

3 D. A. Artis, I.-S. Cho, S. Jaime-Figueroa and J. M. Muchowski, J. Org. Chem., 1994, 59, 2456; J. J. Kohler and W. N. Speckamp, Tetrahedron Lett., 1977, 631; D. L. J. Clive and T. L. B. Boivin, J. Org. Chem., I989, 54, 1997; W. B. Motherwell, A. M. K. Pennell and F. Ujjainwalla, J. Chem. Soc., Chem. Commun., 1992, 1067; W. B. Motherwell and A. M. K. Pennell, J. Chem. Soc., Chem. Commun., 1992, 1068.
4 Intermolecular aromatic ipso-substitutions, see: M. Fiorentino, L. Testaferri, M. Tiecco and L. Troisi, J. Chem. Soc., Chem. Commun., 1977, 317; G. A. Russel, H. Tashtoush and P. Ngoviwatchaip, J. Am. Chem. Soc., 1984, 106, 4622; Y. Watanabe, Y. Ueno, T. Araki, T. Endo and M. Okuwara, Tetrahedron Lett., 1986, 27, 215.

5 S. Caddick, K. Aboutayab and R. I. West, J. Chem. Soc., Chem. Commun., 1995, 1353; S. Caddick, K. Aboutayab and R. I. West, Synlett, 1993, 231; S. Caddick and S. Khan, Tetrahedron Lett., 1993, 34, 7469; S. Caddick and S. Joshi, Synlett, 1992, 805.
6 G. W. Gribble, Contemporary Organic Synthesis, 1994, 1, 145.
7 A. R. Katritzky and K. Akutagava, Tetrahedron Lett., 1985, 24, 5935; J. Bergman and L. Venemalm, J. Org. Chem., 1992, 57, 2495.
8 P. Hamel, Y. Girard and J. G. Atkinson, J. Org. Chem., 1992, 57, 2694.

9 W. Dehaen and A. Hassner, J. Org. Chem., 1991, 56, 896.
10 R. Bit, P. D. Davis, C. H. Hill, E. Veech and D. R. Vesey, Tetrahedron, 1991, 47, 4645.
11 J. E. Leibner and J. Jacobus, J. Org. Chem., 1979, 44, 449.
12 V. J. Mazzola, K. F. Bernady and R. W. Frank, J. Org. Chem., 1967, 32, 486.
13 A. P. Kozikowski and D. Ma, Tetrahedron Lett., 1991, 30, 3317.
14 A. I. Meyers and G. Gilmot, J. Org. Chem., 1993, 58, 6538.
15 G. Hallas and D. C. Taylor, J. Org. Chem., 1964, 29, 1518.
16 K. Jones, J. Wilkinson and R. Ewin, Tetrahedron Lett., 1994, 35, 7673.

Paper 5/05799J
Received 1st September 1995 Accepted 13th October 1995

